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A310 Aa310 ~ E(1,3) is slightly negative and 
A52oAa52o ~ E(-2, 5) is slightly positive. Aa~10 can 
become positive,_ and Aa'52o negative, if Ea(2,5), 
Ea(-3, 7) and Ea(3,  8) are positive, while Ea(], 2) is 
nearly zero, or even slightly positive. Let us assume 
that  Ea(1, 2) = 0, so that  00 = 15 ° 56'. In that  case 
according to (23), P3/Q3 = - t a n 4 7 ° 4 8 '  and, since 
Xzi Y~ = Xz~X~ Y~ = 0, we find that  Xzj Yj/XzjXj = 
- t a n  42 ° 12'. 

For the three ions A ++, B- and C- located in the 
sites of Ti and O atoms (see Fig. 10(b)), we find 
XzjYy/XzjXj = - t a n  47o27 ', the line joining the 
centre of gravity of the negative ions with the positive 
ion being parallel to (010). The interaction energy of 
these adsorbed ions with the crystal ionic chains 
becomes zero for 0 = 14 ° l l ' .  E~(1, 2) is slightly 
positive, so that  these adsorbed ions fulfill the require- 
ments for the appearance of (520). 

For the face (120) to appear, /Icr~20 should be 
slightly negative and A a~30 should be positive. A 
combination of adsorbed ions in sites of crystal ions 
that  would produce this face, could not be found. 

(5) Conclusions 
Up to now the appearance of crystal faces with high 

indices (not vicinal faces) could not be explained. The 
examples seem to reveal at least one of their special 
properties: they are all parallel (within 3 °) to a 
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direction in which the interaction energy of the crystal 
ionic chains is zero. For zircon and anatase it was 
shown that  adsorption of foreign ions might produce 
high index faces on the equilibrium form which are not 
exhibited without adsorption and the appearance of 
which violates the law of Donnay & Harker (1937). 
The foreign ions were assumed to be located in sites 
which, if growth would proceed were to be occupied 
by crystal ions. 

In choosing the examples among the minerals, two 
assumptions were made. First, that  the calculations, 
although strictly valid at 0 °K., apply also at other 
temperatures. Second, that  the crystals found in 
nature represent approximately equilibrium forms. 
The results obtained seem to justify these assumptions. 

The author is indebted to Dr W. G. Perdok for 
discussions and advice. 
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General expressions for the Pa t te rson  function and in tens i ty  dis tr ibut ion in reciprocal space of a 
distorted crystal  are derived. I t  is shown tha t  the in tens i ty  distr ibutions of the broadened reflexions 
are given as sections through the six-dimensional Fourier t ransform of a s t ra in  dis tr ibut ion func- 
tion. Relationship with earlier work and application to one-dimensional intensity distributions, 
such as powder diffractograms, are discussed. 

1. Introduction 

The effect of lattice distortions upon the distribution 
of diffracted X-ray intensity has been treated by 
several authors (Stokes & Wilson, 1944; Warren & 
Averbach, 1950; Warren, 1955) and methods have 
been devised to evaluate lattice strains from X-ray 
measurements in the case of small distortions (Warren 
& Averbach, 1950, 1952). I t  is the purpose of this 
paper to point out that  a general description of lattice 
distortions may be given in reciprocal space as well as 
in physical space by introducing the (six-dimensional) 
Fourier transform ~(t; s) of the distribution function 

ACI2 

W(r; o z) for integral strain o z over distances r. This 
function v?(t; s) includes both the exact line profiles 
and the approximate expressions used in the references. 
The representation offered may thus be employed to 
investigate the significance of these approximations 
and eventually as a basis for more exact methods. 

2. Intensity distribution in reciprocal space 

As a starting point of our discussion, let us review the 
derivation of the intensity distribution for a distorted 
crystal. We prefer to use the 'continous representa- 
tion': Let the positions p of the elements of volume 
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dv in the distorted crystal be given by displacements 
8 from ideal positions P0 corresponding to an undis- 
torted crystal: 

p = po+~5(po). (1) 

The components of Po can now be used as coor- 
dinates in the distorted crystal (1) being the trans- 
formation equation. The amplitude of scattering is 
then proportional to 

I ~(P0) [2zisp0] [2~isS(P0)] d~0 (2) exp exp 

where s is the scattering vector and ~ (P0) the electron 
density of the undistorted crystal. 

The intensity expression is seen to be 

= Ie I I ~ ( p ) ~ ( p + r ) e x p  I [2~isr] 

× exp [27ds.(8(p+r)-8(p))]d~pdv~ (3) 

where we have omitted index zero and introduced the 
vector r in Patterson space of the undistorted crystal. 
Ie is the intensity scattered by an electron• 

I t  is now profitable to define a function A( r ;  s) 
analogous to the distortion Fourier coefficients A~ 
introduced by Warren & Averbach (1950) 

I ~(p)~(p+r)exp[2~is(8(p+r)-8(p))]d~p 
A(r ;  s) = 

I q(p)q(p+r)d~p (4) 

I (s)  = / e N  I P° ( r )A( r ;  s) exp [2~irs]dTr (5) 

where P0(r) is the Patterson function of the un- 
distorted crystal and N the number of unit cells. 

The integrations in (4) may be performed by inte- 
grating throughout the volume of the ruth unit cell 
and then summing over all unit cells; that  is, by the 
substitutions 

fdvp:.~mfvdTp" P =  Pm+P '  

where Pm is the lattice vector corresponding to the 
ruth unit cell and the summation is over all unit cells. 

~(p) is independent of m, and we may write: 

A( r ;  s) - NPo(r) O(P')~(P'+r)..Yexpm [2~is 

• (6 (Pro + p '  +r)-O(Pm+p'))]dvp,. 

If the sum in the integral is independent of p'  we have 

A( r ;  s) = (exp [ 2 ~ r i s ( 8 ( p + r ) - 8 ( p ) ) ) .  (6) 

This is of course true when each term in the sum is 
independent of p '  (undistorted unit cells). Expanding 
the exponential as a Fourier series in p we see tha t  
(6) also holds for the less rigorous condition that  this 
expansion has no component with the period of the 
lattice vector, i.e. the distortions are not periodic with 
the same period as the lattice. 

Performing the integration by dvr in (5) in a similar 
way, one obtains the form derived by Warren (1955) 
for the intensity distribution around the reciprocal 
lattice-point with radius vector H. 

IH(S) = IeN2lFn] 2 -~Y exp [2~ris R~]A,,(s) 
n 

where FH is the structure factor and the summation 
is over all lattice points in Patterson space. 

Equation (5) can be taken as a standard form of the 
intensity expression for a non-perfect crystal. For small 
distortions one may introduce the approximation 
A (r; s) -~ A (r; H) for the intensity distribution 
around the reciprocal-lattice point H. (Warren (1955) 
--referred to later in the article as the 'Warren ap- 
proximation'). A( r ;  H) is then simply the Fourier 
transform of this intensity distribution. 

We shall now turn our attention to the general case 
when this approximation may not be valid, our only 
assumption being tha t  an equation of the type (5) 
exists. 

3. The  distr ibut ion funct ions  W(r; 8) and y~ (t; s) 

Let us introduce the two Fourier expansions of 
A( r ;  s) 

s) = I W(r; o ~) exp [2~isg~)]dz~ (7) A( r ;  

-- I t°(t; s) exp [ - 2 ~ i t r ) ] d ~ t .  (8) A( r ;  S) 

We shall see that  W(r; d ~) and to(t, s) describes dis- 
tortion in Patterson space and intensity space respec- 
tively. The interpretation of W(r; ~) is simple if we 
assume (6) to be valid. W(r; o ~) is then the distribution 
function for the differences 

= 8 ( p + r ) - ~ i ( p )  

i.e. the integral strains between points in the structure 
separated through distances r. The same result is, 
however, obtained without this assumption by con- 
sideration of the Patterson functions. Let us take the 
Fourier transform of (5) with the aid of (7) to obtain 
the Patterson function of the distorted crystal 

P(r) = I P0(r ' )W(r ' ;  r - r ' ) d ~ r .  (9) 

W(r; ~) is evidently the probability tha t  points with 
a separation r in the undistorted crystal will have a 
separation r + #  in the distorted crystal. 

An equation similar to (9) is obtained for the 
intensity distribution by introducing (8) in equa- 
tion (5): 

= N~Ie l I ° ( s - t ) t o ( t ;  s)d~t (10) I (s)  

where N2Ielo(s) is the intensity distribution of the 
undistorted crystal. (10) can be written in a different 
form: 

s) = N2Ie l I ° ( s - t ) t o ( t '  q)d~:t J ( q ;  

I(s)  = J(s;  s ) .  (10a) 
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Fig. l. (a)-(c) Contour  plot  of the  funct ions  W(x, 6), A (x, s) and  ~p(t, s )as  given b y  the  analyt ica l  example  in the  t e x t  (c = 0.2). 
(d) The profiles I , ( s ) /KFj  2 as given b y  the  sections t----s--hz,2,  a with  h z ----0.25. Sections corresponding to the  W a r r e n  
approx imat ion  are ind ica ted  by  do t t ed  lines in (c). 

Here J ( q ;  s) is a convolution integral of the functions 
I 0 and y: containing q as a parameter, and the in- 
tensi ty distribution I(s)  is the section q = s through 
the six-dimensional coordinate space for J ( q ;  s). 
Only this section of J ( q ;  s) is determined by the in- 
tensity distribution; this indefiniteness is, of course, 
reflected into the functions v2, A and W. 

A considerable simplification is obtained, however, 
when use is made of the fact tha t  I0(s) is a point- 
function, different from zero only in the reciprocal- 
lattice points. (10) then leads to 

/ ( s )  = ~:  ~V21elF:I2W(s-H:; s) (11) 

where the sum is over all reciprocal-lattice points. 
F:  and Ha are the corresponding structure factors and 
reciprocal-lattice vectors. 

The meaning of this equation is: The j t h  term in 
(l l) represents the intensity distribution associated 
with the reciprocal lattice-point H:. These intensity 
distributions are the three-dimensional sections t = 
s - H a  through the six-dimensional coordinate space 
of a function ~(t ;  s) which is the six-dimensional 

Fourier transform of the distribution function W(r, #). 
((7) and (8)). An illustration of W, y: and A is shown 
in Fig. 1 (one-dimensional ex.~mple). 

The 'Warren approximation'  is equivalent to a sub- 
sti tution of the sections t = s - H :  by the sections 
s = H:. 

The influence of crystal size may easily be taken 
into account by introducing a 'shape factor' (Ewald, 
1940). Using the same argument as in section 2, it is 
found tha t  the effect of particle size can be described 
by an additional factor Apart(r ) in the function A (r; s) 
(or in W(r, 8)). Extension to the case of a distribution 
of distorted crystallites offers no special difficulties. 

4. P r o j e c t i o n s  i n  rec iproca l  space.  
A n a l y t i c a l  example  

The simplest way to transfer the general results of the 
preceding section to the one-dimensional intensity 
distribution obtained from a powder is to apply the 
' tangent-plane approximation'  (Stokes & Wilson, 
1943), tha t  is to substitute the appropriate integration 
between concentric spheres in reciprocal space by one 
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between tangent  planes.* The integrat ion m a y  be 
carried out in (5) with the aid of (7). The same result  
is obtained by  an approximate,  but  possibly more 
instructive,  a rgument  based on the fact tha t  a section 
through physical  space corresponds to a projection in 
reciprocal space and  vice versa: We consider the re- 
flexions of orders j from a set of lattice planes, 
projected on to the direction of their  reciprocal lattice 
vectors. By  inspection of (9), we obtain 

Ij(s) = KIFjI~W '(s-hJ, s) (12) 

where K includes Lorentz and polarization factors, 
8 and h~ are the lengths of the scattering vector and 
reciprocal-lattice vector respectively. The six-dimen- 
sional coordinate space for F( t ;  s) is made up of two 
three-dimensional  ones (s and t-space), and we 
observe tha t  the function y/ of (12) can be derived 
from the general dis t r ibut ion funct ion yJ(t; s) by a 
projection in t-space (on to the direction of the 
reciprocal lattice-vectors) and a section in s-space 
(along these vectors). I ts  two-dimensional Fourier  
t ransform 

= I I s) exp w' [-2zd(tx +s~)]dtds 

is accordingly given by  the general s t rain-dis t r ibut ion 
function W(r ;  o ~) as a section in r-space (along the 
normal  of the reflecting planes) and a projection in 
e-space  (on to this normal) W'(x, ~) is essentially 
the  dis t r ibut ion PL(AL) of Warren  & Averbach (1952), 
who discuss it in more detail.  The in termediate  func- 
t ion A'(r, s) is seen to be a section of A ( r ;  s) in both 
spaces. 

A similar a rgument  m a y  be applied to sections 
through reciprocal space. 

As an i l lustrat ion we have studied a one-dimensional 
analyt ical  example  which may,  within the tangent-  
plane approximation,  represent the reflexions from a 
set of latt ice planes obtained from a powder. Let  the 
displacements be Gaussian, and randomly  dis t r ibuted 
a long the normal  

W'(x, d ~) = (2cx)-½ exp (-~#2/2cx) 

from which immedia te ly  follows (cf. Campbell  & 
Foster, 1942) 

A'(x, s) -- exp ( -2~cxs  2) and ~f'(t, s) -- csg/~(cgs4+t 2) 

and the line profiles 

* A general examination of the 'tangent-plane approxima- 
tion' is outside the scope of this article. Exact calculations 
may be carried out, however, by expanding A (r; s) in spher- 
ical harmonics and introducing the well-known Legendre 
series for the exponential (cf. Morse & Feshbach, 1953). The 
Fotu'ier transfolzns (7) and (8) are then transferred into inte- 
gral transforms (involving spherical Bessel functions) which 
combine the coefficients of W(r; ~) and ~(t; s). 

I j  = KIF~l~cs2/~[c~ s4+ (s-hA~]. 

W'(x, ~), A'(x, s), v2'(t , s) and the sections Ij(s) are 
shown in Fig. 1 for the values h 1 = 0.25 and c = 0.2. 
(This would mean  a ra ther  heavy  distortion, the line 
broadening being of the same order of magni tude  as 
in organic polymers.) Notice tha t  the hnes are s l ightly 
asymmetr ic  due to the s-dependence of ~',  whereas 
the sections corresponding to Warren ' s  approximat ion  
are symmetr ic  when W is symmetr ic  in d ~. We m a y  
examine the accuracy of this  approximat ion  in our 
example  by differentiat ing y~' with respect to s. The 
relat ive error is found to be (to the first order) 

n 2 - 1  
A I / I  = 2.  n~ +--] • As~hi 

where As is the distance from the center of the line 
and n/2 is the ratio between As and the half-width.  

Calculations have also been made without  using the  
' tangent-plane approximat ion '  in the case of spheri- 
cally symmetr ica l  distortion broadening (i.e. to the 
first te rm in the spherical harmonics expansion). We 
shall only quote the results:  

W(r, ~) = (2cr) -3/2 exp (-7~2/2cr) 

A(r, s) = exp (-2~crs ~) 
~ ( t ,  s)  = c s~ /~2(c2s4+ t2 )  ~ 

Ij(8) = K'[Fj12cs/27~2hj[cgs 4+ ( s -h i )  2] 

The essential deviat ion from the ' tangent-plane ' -  
result  is a factor ½-~sh~ to the line profile. The propor- 
t ional i ty  factor K' of the last equation will not contain 
a Lorentz factor. 

The author  wishes to express his sincere grat i tude 
to Dr N. Norman  and Dr H. Viervoll for valuable  
discussions and helpful criticism of the manuscr ipt .  
The Norwegian Research Council for Science and the  
Humani t ies  is grateful ly acknowledged for f inancial  
support.  
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